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This paper proposes a new method for solution of integral-differential
equation of oscillation of linear viscous and elastic systems using the Laplace
integral transform method for random hereditary functions with low
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present in the literature. A solution of the integral-differential equation of
K.eywo.rds" oscillation of linear viscoelastic systems was developed in expanded form,
V|sc<3_5|_ty and it was demontrated that the alpha of that expanded form is a relevant
Elasticity solution of that equation which was obtained by a well-known method of

Periodic regularity averaging, and orifginal functions of the first two terms of the expanded

form. The influence of the second term of the expanded form on the solution
for Rizhanin weakly-singular kernel with the parameters for materials of
KAST-V fiberglass. A fundamental result was achieved, that in the case of low
frequency, the influence of subsequent terms of the extended form on the
solution is insignificant, and that is growing with the rise of the oscillation
frequency. When the frequency rate reaches one hundred the amplitude of
the second term of the extended form, at some given points of time, is 20-
25% of the amplitude of the first term, and herewith, the amplitudes of all
terms of the extended form with the course of time are distributed according
to the exponential law, and the phases are shifted.
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1. Introduction

A wide-range use of polymer, composite, and
other materials with rheological properties in
technology, machine-building, and in various
industries, in the form of plates and envelopes, has
led to the necessity of study of the problems of
optimum structural design. The mentioned thin-
walled elements are wused in contemporary
constructions as both buildings’ envelopes and
supporting structures deigned for operation under
the effect of power load. It is clear that calculations
of strength, stability and oscillations of the described
structures have a crucial importance during the
constructions designing process.

In such a way, in order to obtain an actual picture
of the tensed deformation state of structural
elements, it is necessary to conduct the research
with taking into consideration the rheological
properties of materials subjected to intense dynamic
loads.

Because of that, the heritable theory of
viscoelasticity attracts the attention of researchers.
In connection with that, in recent years, a number of
scientific papers were published, which represent
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the most recent achievements in the theory of
viscoelasticity.

Despite the above mentioned studies in the area
in question, until now there are no methods in place
which would, to a sufficient enough extent, analyze
the tension deformation state of a viscoelastic object.

Analyzing the problem of propagation of non-
steady dynamic waves in linear viscoelastic
materials, two quite different problems are
encountered. The first issue lies in the description of
differential equation of motion, selection of
equations of state, and establishing initial and
boundary conditions. And the second issue, usually
the more complicated one, is to solve the problem.
Among dynamic viscoelasticity problems, the
problems of oscillations of viscoelastic systems and
non-steady dynamic waves’ problems, special
mention has to be given to problems of viscoelastic
systems’ oscillation and non-steady wave problems,
which are topical and have practical significance.

2. Methods of the study

For analytical solution of the set problem, the
following methods were used: mathematical
methods of the dynamic theory of linear and non-
linear viscoelasticity, the theory of non-linear
differential equations in partials derivatives of
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hyperbolic type, the theory of Volterra integral
equations of the second type, operational calculus,
and the method of variables’ separation.

Using these methods, the following was
developed: a generalized mathematical model, and a
method for solving the problem of free motion of
heritable solid objects, with the use of which it will
be possible to describe the behavior of viscoelastic
systems with random rheology under the effect of
external load.

3. Topicality of the study

The advancement of different areas of technology
and industry is inseparably associated with
development of new polymer and composite
materials with preset physical and mechanical
properties.

The emergence of such materials will become
widely used in the emerging technology and
contributes to development of new structures
operating in non-standard conditions, such as
accidental non-steady effects, pressure of motional
load, impact of shockwaves, and seismic effects.

Such practical problemss of the theory of linear
and non-linear viscoelasticity remains, as of today,
understudied.

Because they are not just topical, but also
important problems of mechanics of a deformed
solid object for practical application.

These circumstances predetermine the topicality
of the subject of this paper, aimed at development
and analysis of mathematical models enabling the
development of efficient methods for solution of the
set problems.

4, Review of literature

The study of physical-mechanical properties of
materials with rheological properties, and the
analysis of application thereof in industry and
technology, etc., demonstrated the necessity of use
the methods of dynamic viscoelasticity theory
(Lebedev, 1982) for valuation of structures’ stability
and strength.

Among dynamic problems of viscoelasticity, the
problems connected with oscillation of viscoelastic
systems and non-steady wave problems have to be
specially mentioned.

Especially complex are non-steady dynamic
problems of viscoelasticity which have important
practical applications in many areas of
contemporary technology. In order to solve noon-
steady dynamic problems of viscoelasticity, there are
various mathematical methods which allow to obtain
solutions of boundary problems of propagation of
non-steady waves (Badalov, 1987; Bazhlekova,
2014) and the problems of oscillation of viscoelastic
systems for certain heritable functions (Matiash,
1971). In papers (Badalov, 1987; Mainardi, 2012;
Bazhlekova, 2014), non-linear oscillations of
viscoelastic system using the method of double
integration in time were studied, and for numerical

solution, the method of direct replacement of
integrals by a bounded sum.

When solving the problems of oscillations of
viscoelastic systems presented in papers (Matiash,
1971; Badalov, 1987), a well-known averaging
method was used, which found its further
development in scientific papers (Lebedev, 1982;
Zhao, 2009).

It should be noted that in many cases, when
solving the problem of non-steady dynamic
problems of viscoelasticity, analytical form of
relaxation kernels is not prescribed. Herewith, the
solutions are framed with the use of certain
approximation methods which deduce the final
solution to the solution of integral-differential
equations of free and forced oscillations of
viscoelastic systems implemented using different
numerical methods (Badalov, 1987; Mainardi, 2012;
Bazhlekova, 2014). Especially complex and
important task is to conduct an in-depth analysis and
developed more accurate solutions of the integral-
differential equation of oscillation of viscoelastic
systems, and to study, using thereof, the influence of
different boundary and initial conditions, rheological
properties and inhomogeneity of materials, etc., on
wave field (Matiash, 1971; Mainardi, 2012;
Kurbanov, 2014). This paper is dedicated to study of
these problems.

5. Results of the study

The influence of rheological properties of
materials on oscillations of thin-walled shells is
studied in this paper.

Let us consider the problem of free oscillation of
circular cylindrical shell. Let us choose the
coordinate x;=x in the middle surface of the shell
along the generator as coordinates and arc length x
= @ in the circular direction. Herewith, the equations
of the fluctuation of elastic circular cylindrical shell
in motions are of the form:

Lk[Ul,Uz,U3]=,0h82Uk

ot2

(c=13)
M

Where pis the density of the material?

h is the thickness of the shell;

Uk is the motion.

If the material of the shell is deemed viscoelastic,
the relation between the tension o and deformation
¢ is of the form (Kurbanov, 2014):

5,01)= 26 { (r)- jg(r-we,,(r)df}

0
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R(t) and Ri(t) are called functions of shift and
three-dimensional relaxation accordingly;

G is instantaneous shift modulus;

K is instantaneous modulus of three-dimensional
compression.

Let us rewrite expressions (2) in the form:

o;j(t)—s 4—0—2({ g, —IQZ—T)S (z')dz':|
29 ) ottt s+
8, lct—)-Qle—oleeke

4)
j[Q(t_T)_Q1(t—T)]6’(T)dT =0
0= Efe,)+ 6135_55 E(0)s, .

Where E is Young’'s modulus;

vis the Poisson’s ratio;

And the operator E’(z) is designated by the
formula:

()= 2 [0t~ 2)=(c)d

(6)
We assume that the Kirchhoff-Love hypothesis is
fulfilled, and the isotropy of the material is

preserved. Then, when 933 = 0

1%
E*(833)= ——E*(gll + 522)
1-v (7
And equation (5) obtains the form:

E . .
Oy :m[E (511)+VE (522)]

Taking into account these equivalences in the
equations of moment coefficients and cutting forcers,
we obtain:

= @)

Eh

L=12,

[E 32 +vE (51)]

7, =L)E*<w>

2(1+v
M, =—EN (£ (%) +vE'(R,)]
T 20-v?) ‘ ? ®
ER

M, :m [E*(N2)+VE*(N1)]

ER .
——— £(7)
12(1+v)

These indicate that from relevant equations of
elastic shell oscillation, it is quite simple to obtain
relevant equation of viscoelastic shell oscillation, if

parameters {‘91’52’ @, Nl’ NZ’ T} are replaced

with operators

{E*(gl)ﬂ E*(gz)a E*(a)), E*(Nl)’ E*(Nz)a E*(T)}
determined using the formula (6). Because of that,

from equation (2) for viscoelastic shell, the following
formula is obtained (Matiash, 1971; Zhao, 2009):

. : \ o*uU
Lk[E (Ul)’ E (Uz): E (Us)]:ph 8t2k

le :Mlz =

)

It should be mentioned that initial and boundary
conditions have to be attached to equation (9)
describing the oscillations of viscoelastic shell.

Boundaries conditions may be set in different
ways and are used for the determination of own
numbers and own functions, made in the first section
of this chapter, and the initial conditions are set in
the following form:

Ul =), =T :

8U _ T'(tl = ﬂ,
ot =0
=0 (10)

In many practical problems, the study of
viscoelastic systems oscillation is reduced to solution
of integral-differential equations which are obtained
from equation (9), or using thee variables’
separation method, or using the Bubnov-Galerkin
method. After doing that, the following is obtained
from equation (9):

T'(t)+ 2’ T(t)=e A ja)(t - 7)T(r)dr,

0

(11)
where

0(t)=zakr),
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From that it is seen that the solution of the set
problem (Matiash, 1971) is reduced to the solution
of equation (11) using conditions (10).

Applying the Laplace integral transform in time t
to equation (11), the following is obtained:

’
T(p)= 2 pzTO +Tg
p AL —eA w(p) (12)

It is clear that in case of small values of time t, the
parameter p is large, and with the increase of p, the
image of relaxation kernel @(p) tends to zero.
Because of that, the in equation

t
0< gIco(t)dr <1, o(t)=0
0

Established by A. A. llyushin (1959) is met here.
It follows from that in equation that the condition

e X a(p)
pZ + 12
is always correct.

With such presumptions, the right side of the
equivalence (12) is expanded into series:

rip)-L0t T8 2ol

pr+22 S\ prt A

<1

(13)
Let us make the following transformations.

27 t 0 0
L' [gx”t—a)(p)} = gﬁj w(r)sin At — ) = elsin ltj o(r)cos Ardr — &l cos ltj‘ o(r)sin Awdt —
0 0

p2+/12

—eAsin /Itj o(r)cos Azt + gl cos /uj (7 )sin Awdt
t t

Let us introduce the following notations:
o, = j a)(r)sin Ardr
0

o, = | o(r)cos Ardz

c

S =8

glt)= sin/bfT afr)cosAdr - cosﬂtTm(r)sinﬂ, ot

Then, the last formula can be written in the form:
el olp) _ gﬂ,[a)c - po, —(p2 + A )g(p)]
pr+A pr+A

_ Taking into consideration this expression for
T (7] the following is obtained:

T(p) T,p+T,

Here

1 2 1 2
(p(p)=(p +550)S/1] +/12(1—55a)cj
w(p)=alp)+o, %Hoe +§(wf +@?)

If the expression

0

g(r)= Ja)(r)sin At —7)dr

t

Ay
is a small quantity, then |g 2% )| will be small
Due to that, the following in equation is correct:
-
2y(p) _,
o(p)

Herewith, the following form can be written:

§_0(P)_ X’ '/_/(P) (14)
= \_pT+T, v(p) v(p))
T(p):ﬁ 1+812TID)+8224(TP)] +...
p\p p\p p\p (15)
The original of the first term of this series is
determined by the formula
Lot 1 T, 01 - l‘c"/la)s 1
T(t)=e? " |T,cos /1(1 - —cw, jt + sin /1(1 ——cw, jt
2 ( 1 j 2
Al-—sw,
2 (16)

This is a known solution of the set problem
obtained using the method of averaging (Matiash,
1971).

The original of the second term of the series is
determined in the form:

T,(t)= eX°T,(t)* Z(¢) (17)

where
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(r)
The original of the ratio 7 (») is determined by

Sl

the formula:
. 1
L smi(l—zga)b}t L {
——EW At (0} ——Ew At
Z(t)= wlt)*e ? +—e? cosd| 1-—¢m, [t+
1 A 2
A 1—58606
&
d—— Ao, 1
+ sind| l——¢cw, |t
1 2
A 1- 5 g,
(18)
where In a similar way, it is possible to determine the
originals of next terms of the solutions’ series.
o, gl , 5 In order to compute the influence of the second
d=A—+ 4 ( s +a)c) term (17) on the solution: (), let's consider the
w w : .
s ¢ ) Rzhanitsyn’s kernel:
The asterisk means the convolution of the (t) R
functions o\t)= ¢ (19)
where © < « <1, / is a constant, €is some
small parameter.
For this kernel, the formula (16) does not change

) 5(0)= [ (- 2)g(e)az

Taking into account (18) in (17), the original of
the second term of the series is found.

1
-—cw 1
T,(t)=e ® t{{gm'cos 2[1—?5w5jt+

its form,and T (1) is determined by the formula

s Gin A l—l—ga)c t xfe””r“"sin 24 l—l—ga)c tdr +
2 2 2

0

t
je'”’r“‘]dr -
0

M4 cos l[l - ;—ga) L,jt}x

t

+ Em'sinll—l—ea)ct—
2 2
je'ﬁ’r“'] cos 24

M4 cos l(l—l—ga)fjl (l—l—gwfjrdr+
2 2

0

S ﬂ(l—l—ga)c)t—
2 2
2o = e +1—(m3+m5)sin /Z(l—z—ga)L)t (20)

+1—(m2—m6)cos ﬂ(l—?ga)L)t+ 1
21(1—&1”]
2

ga)sTo(d —;50)5/1]

where
m =
3 |

£0 (a ) sin {aarctg (;—H
- —sw,
2

0)5 = (ﬂ2+12)’%
o1
e(TO —2860ST0)

__80le) [aarctg [%N

a. (ﬁ2+/l2)7%
m, = 2
I-7eo, m, = AT, o,

10
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| Integrals included to (20) for certain KAST-V
ew| T, —— AT, o, fiberglass material were computed  using
ms = approximation methods, and graphs of T, (t) and
1_15606 T, (1) were plotted as functions of time ! with the
2 5 following values of parameters ¢ = 0’2,

1 1 1_ —
8a)s(Tol —25a)ST0/1j(d—2ga)S}tj p=0004. z=100 1,=0 T, =1T,=1

mg = ) 2 To1 =1
A1-—so,
2

Ql« JisEuler's ﬁamma function.

(D)

Puc.2.1. Tpadbura T (t) H T2(t) mmpH ur=0: V=1

Fig. 1: Graphs of T1(t) and T2(t) at uo=0; vo=1

;l 5 Formz = -~

T

1 /\A\f\ P o
VAN vART Ao

Puc.2.2. Tpadurn Ty(t) B Ty(t) mpu uEl;: vy=0

Fig. 2: Graphs of T1(t) and T2(t) at uo=1; vo=0

From the conducted computations it was
obtained that taking into account further term of 6. Discussion
series improves the accuracy of the solution.

11
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The goal fot eh paper lies in the development of a
generalized mathematical model and development of
new methodology for solution of the integral-
differential equation of viscoelastic systems with
random rheology.

A mathematical method for solution was
developed, which is suitable for both dynamic
vicoelasticity problems and the problem of
oscillation of viscoelastic systems.

With the help of Laplace integral transform, the
integral-differential equation of oscillation of linear
visoelastic systems for random kernels was solved.

A solution was achieved in the form of series and
it was shown that at low frequencies of osscilation
the influence of consequent terms of the series on
the solution is insignificant and such influence
increases with the increase of frequency.

The achieved solution was studied for
Rzhanitsyn’s kernel at different frequencies of a
certain material.

Analysis of the achieved solution shows that
taking into account consequent terms of the series
improves the accuracy of the solution and that
amplitudes of all terms of the series exponentially
decrease in the course of time, and the phases are
shifted.

The achieved results may be used directly for
solving an array of applied problems in engineering
computations of strength, durability and operational
reliability of viscoelastic components of equipment.

The developed mathematical models and
methods can be used in scientific research
institutions, design organizations dealing with
development and creation of new materials, in
technical higher education establishments, as a new
technique for solving linear and non-linear integral-
differential equations with unknown integrands,
which may be of interest for development of world
science.

7. Conclusions

1. A general analytical solution method was
proposed, which is which is suitable for both non-
steady dynamic problems of viscoelasticity and
the problems of oscillation of viscoelastic systems

12

for random heritable functions describing

mechanical properties of studied mediums.

2. Using the mentioned above method, a solution of
integral-differential equation of linear
viscoelastic systems’ oscillation was developed in
the form of series. It was shown that the first
term of this series is the solution of integral-
differential equation of viscoelastic systems’
oscillation which was achieved using the known
averaging method, and consequent memebrs
provide the refinement of this solution.

With the use of numeric computations it was
shown that at low frequencies the influence of
consequent terms of the series is insignificant, and
with the increase of the frequency such influence
increases.
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