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This paper proposes a new method for solution of integral-differentialequation of oscillation of linear viscous and elastic systems using the Laplaceintegral transform method for random hereditary functions with lowviscosity of materials, and it was demonstrated that this solution is moreaccurate in case of large values of oscillation frequency, as compared to thosepresent in the literature. A solution of the integral-differential equation ofoscillation of linear viscoelastic systems was developed in expanded form,and it was demontrated that the alpha of that expanded form is a relevantsolution of that equation which was obtained by a well-known method ofaveraging, and orifginal  functions of the first two terms of the expandedform. The influence of the second term of the expanded form on the solutionfor Rizhanin weakly-singular kernel with the parameters for materials ofKAST-V fiberglass. A fundamental result was achieved, that in the case of lowfrequency, the influence of subsequent terms of the extended form on thesolution is insignificant, and that is growing with the rise of the oscillationfrequency. When the frequency rate reaches one hundred the amplitude ofthe second term of the extended form, at some given points of time, is 20-25% of the amplitude of the first term, and herewith, the amplitudes of allterms of the extended form with the course of time are distributed accordingto the exponential law, and the phases are shifted.
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1. Introduction

*A wide-range use of polymer, composite, andother materials with rheological properties intechnology, machine-building, and in variousindustries, in the form of plates and envelopes, hasled to the necessity of study of the problems ofoptimum structural design. The mentioned thin-walled elements are used in contemporaryconstructions as both buildings’ envelopes andsupporting structures deigned for operation underthe effect of power load. It is clear that calculationsof strength, stability and oscillations of the describedstructures have a crucial importance during theconstructions designing process.In such a way, in order to obtain an actual pictureof the tensed deformation state of structuralelements, it is necessary to conduct the researchwith taking into consideration the rheologicalproperties of materials subjected to intense dynamicloads.Because of that, the heritable theory ofviscoelasticity attracts the attention of researchers.In connection with that, in recent years, a number ofscientific papers were published, which represent
* Corresponding Author.Email Address: Akhilbalasu@yahoo.ca

the most recent achievements in the theory ofviscoelasticity.Despite the above mentioned studies in the areain question, until now there are no methods in placewhich would, to a sufficient enough extent, analyzethe tension deformation state of a viscoelastic object.Analyzing the problem of propagation of non-steady dynamic waves in linear viscoelasticmaterials, two quite different problems areencountered. The first issue lies in the description ofdifferential equation of motion, selection ofequations of state, and establishing initial andboundary conditions. And the second issue, usuallythe more complicated one, is to solve the problem.Among dynamic viscoelasticity problems, theproblems of oscillations of viscoelastic systems andnon-steady dynamic waves’ problems, specialmention has to be given to problems of viscoelasticsystems’ oscillation and non-steady wave problems,which are topical and have practical significance.
2. Methods of the studyFor analytical solution of the set problem, thefollowing methods were used: mathematicalmethods of the dynamic theory of linear and non-linear viscoelasticity, the theory of non-lineardifferential equations in partials derivatives of
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hyperbolic type, the theory of Volterra integralequations of the second type, operational calculus,and the method of variables’ separation.Using these methods, the following wasdeveloped: a generalized mathematical model, and amethod for solving the problem of free motion ofheritable solid objects, with the use of which it willbe possible to describe the behavior of viscoelasticsystems with random rheology under the effect ofexternal load.
3. Topicality of the studyThe advancement of different areas of technologyand industry is inseparably associated withdevelopment of new polymer and compositematerials with preset physical and mechanicalproperties.The emergence of such materials will becomewidely used in the emerging technology andcontributes to development of new structuresoperating in non-standard conditions, such asaccidental non-steady effects, pressure of motionalload, impact of shockwaves, and seismic effects.Such practical problemss of the theory of linearand non-linear viscoelasticity remains, as of today,understudied.Because they are not just topical, but alsoimportant problems of mechanics of a deformedsolid object for practical application.These circumstances predetermine the topicalityof the subject of this paper, aimed at developmentand analysis of mathematical models enabling thedevelopment of efficient methods for solution of theset problems.
4. Review of literatureThe study of physical-mechanical properties ofmaterials with rheological properties, and theanalysis of application thereof in industry andtechnology, etc., demonstrated the necessity of usethe methods of dynamic viscoelasticity theory(Lebedev, 1982) for valuation of structures’ stabilityand strength.Among dynamic problems of viscoelasticity, theproblems connected with oscillation of viscoelasticsystems and non-steady wave problems have to bespecially mentioned.Especially complex are non-steady dynamicproblems of viscoelasticity which have importantpractical applications in many areas ofcontemporary technology. In order to solve noon-steady dynamic problems of viscoelasticity, there arevarious mathematical methods which allow to obtainsolutions of boundary problems of propagation ofnon-steady waves (Badalov, 1987; Bazhlekova,2014) and the problems of oscillation of viscoelasticsystems for certain heritable functions (Matiash,1971). In papers (Badalov, 1987; Mainardi, 2012;Bazhlekova, 2014), non-linear oscillations ofviscoelastic system using the method of doubleintegration in time were studied, and for numerical

solution, the method of direct replacement ofintegrals by a bounded sum.When solving the problems of oscillations ofviscoelastic systems presented in papers (Matiash,1971; Badalov, 1987), a well-known averagingmethod was used, which found its furtherdevelopment in scientific papers (Lebedev, 1982;Zhao, 2009).It should be noted that in many cases, whensolving the problem of non-steady dynamicproblems of viscoelasticity, analytical form ofrelaxation kernels is not prescribed. Herewith, thesolutions are framed with the use of certainapproximation methods which deduce the finalsolution to the solution of integral-differentialequations of free and forced oscillations ofviscoelastic systems implemented using differentnumerical methods (Badalov, 1987; Mainardi, 2012;Bazhlekova, 2014). Especially complex andimportant task is to conduct an in-depth analysis anddeveloped more accurate solutions of the integral-differential equation of oscillation of viscoelasticsystems, and to study, using thereof, the influence ofdifferent boundary and initial conditions, rheologicalproperties and inhomogeneity of materials, etc., onwave field (Matiash, 1971; Mainardi, 2012;Kurbanov, 2014).  This paper is dedicated to study ofthese problems.
5. Results of the studyThe influence of rheological properties ofmaterials on oscillations of thin-walled shells isstudied in this paper.Let us consider the problem of free oscillation ofcircular cylindrical shell. Let us choose thecoordinate x1=x in the middle surface of the shellalong the generator as coordinates and arc length x2

=  in the circular direction. Herewith, the equationsof the fluctuation of elastic circular cylindrical shellin motions are of the form:
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R(t) and Ri(t) are called functions of shift andthree-dimensional relaxation accordingly;
G is instantaneous shift modulus;K is instantaneous modulus of three-dimensionalcompression.Let us rewrite expressions (2) in the form:
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From that it is seen that the solution of the setproblem (Matiash, 1971) is reduced to the solutionof equation (11) using conditions (10).Applying the Laplace integral transform in time tto equation (11), the following is obtained:
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Q   is Euler’s gamma function.

Integrals included to (20) for certain KAST-Vfiberglass material were computed usingapproximation methods, and graphs of  tT 1 and
 tT 2 were plotted as functions of time t with thefollowing values of parameters 2,0 ,
004,0 ; 100 , 00 T , 11

0 T ; 10 T ,
11

0 T ;

Fig. 1: Graphs of T1(t) and T2(t) at u0=0; v0=1

Fig. 2: Graphs of T1(t) and T2(t) at u0=1; v0=0From the conducted computations it wasobtained that taking into account further term ofseries improves the accuracy of the solution. 6. Discussion
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The goal fot eh paper lies in the development of ageneralized mathematical model and development ofnew methodology for solution of the integral-differential equation of viscoelastic systems withrandom rheology.A mathematical method for solution wasdeveloped, which is suitable for both dynamicvicoelasticity problems and the problem ofoscillation of viscoelastic systems.With the help of Laplace integral transform, theintegral-differential equation of oscillation of linearvisoelastic systems  for random kernels was solved.A solution was achieved in the form of series andit was shown that at low frequencies of osscilationthe influence of consequent terms of the series onthe solution is insignificant and such influenceincreases with the increase of frequency.The achieved solution was studied forRzhanitsyn’s kernel at different frequencies of acertain material.Analysis of the achieved solution shows thattaking into account consequent terms of the seriesimproves the accuracy of the solution and thatamplitudes of all terms of the series exponentiallydecrease in the course of time, and the phases areshifted.The achieved results may be used directly forsolving an array of applied problems in engineeringcomputations of strength, durability and operationalreliability of viscoelastic components of equipment.The developed mathematical models andmethods can be used in scientific researchinstitutions, design organizations dealing withdevelopment and creation of new materials, intechnical higher education establishments, as a newtechnique for solving linear and non-linear integral-differential equations with unknown integrands,which may be of interest for development of worldscience.
7. Conclusions1. A general analytical solution method wasproposed, which is which is suitable for both non-steady dynamic problems of viscoelasticity andthe problems of oscillation of viscoelastic systems

for random heritable functions describingmechanical properties of studied mediums.2. Using the mentioned above method, a solution ofintegral-differential equation of linearviscoelastic systems’ oscillation was developed inthe form of series. It was shown that the firstterm of this series is the solution of integral-differential equation of viscoelastic systems’oscillation which was achieved using the knownaveraging method, and consequent memebrsprovide the refinement of this solution.With the use of numeric computations it wasshown that at low frequencies the influence ofconsequent terms of the series is insignificant, andwith the increase of the frequency such influenceincreases.
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